Service Search Product Search Gene Search
HOME

SERVICES

• Protein Biotinylation Service • Custom Lysate Preparation Service • Immunogenicity Test Service > Anti-Drug Antibody (ADA) Evaluation Service > Neutralizing Antibody (NAb) Test Service • Anti-Drug Antibody (ADA) Evaluation Service • Neutralizing Antibody (NAb) Test Service • Thanksgiving Day Sale • Enzyme Target & Activator & Inhibitor Screening Service • GPCR Screening Service • Ion Channel Screening Service • Bio-Layer Interferometry (BLI) • Electrophoretic Mobility Shift Assay (EMSA) Service • Transcription Factor Analysis > Electrophoretic Mobility Shift Assay (EMSA) Service > Chromatin Immunoprecipitation (ChIP) Assay Service > DNase I Footprinting Assay Service • Transporter Screening Service • Chromatin Immunoprecipitation (ChIP) Assay Service • Enzyme Activity Assay Service • DNase I Footprinting Assay Service • Co-Immunoprecipitation (Co-IP) • Surface Plasmon Resonance (SPR) Service • Pull Down Assay • Protein Mutant Library Construction • C1 Expression System • Protein Conjugation Service on Beads • Bacteria Expression • Yeast Expression • Mammalian Cell Expression • Insect Cell Expression • Animal-Free Expression • Cell-Free Protein Expression • Large-Scale Protein Production • PEGylation Products and Services > Custom PEGylation Services > PEGylation Products • Basic Protein Characterization • Protein Labeling • Stable Cell Line Construction for Protein Expression • Protein Mutagenesis • Protein Interaction Analysis Services > Bio-Layer Interferometry (BLI) > Co-Immunoprecipitation (Co-IP) > Surface Plasmon Resonance (SPR) Service > Pull Down Assay > Yeast Two-Hybrid Screening > Membrane-Based Yeast Two-Hybrid Screening > CLIP-Seq Service > Protein Binding Site Mapping > Isothermal Titration Calorimetry > Membrane Protein Binding Screening and Profiling • Yeast Two-Hybrid Screening • Membrane-Based Yeast Two-Hybrid Screening • Recombinant Protein or Antibody Production • Protein Expression Systems > Nicotiana Tabacum Expression System > Bacterial Expression Systems(E. coli / Bacillus) > Yeast Expression Systems(P pastoris / S cerevisiae) > Baculovirus-insect Cell Expression Systems > Mammalian Expression Systems(CHO / 293) • PEGylation Services • Stable Cell Line Construction for Protein Expression • Process Development • cGMP Manufacturing • QC and QA • Bacterial Manufacturing • CLIP-Seq Service • Protein Binding Site Mapping • Quantum Dot Labeling • Protein Expression > Custom Lysate Preparation Service > C1 Expression System > Protein Co-Expression Service in E. coli System > Protein Co-Expression Service in Mammalian Cells > Trimeric Protein Production Service > Lettuce Transient Expression System > Baculovirus-Mammalian cell Protein Expression System > Fusion protein expression • Protein Co-Expression Service in E. coli System • Protein Co-Expression Service in Mammalian Cells • NovEgg Expression System • ADME/Tox Prediction • Pharmacophore Modeling • Screening and Profiling Services > Enzyme Target & Activator & Inhibitor Screening Service > GPCR Screening Service > Ion Channel Screening Service > Transporter Screening Service • Trimeric Protein Production Service • Incorporation of Bioorthogonal Handles > Incorporation of Unnatural Amino Acids > Incorporation of Unnatural Sugars > Direct Chemical Modification • Incorporation of Unnatural Amino Acids • Incorporation of Unnatural Sugars • Protein/Peptide Crosslinking > Enzymatic Crosslinking Services > Photocrosslinking Services > Chemical Crosslinking Services • Enzymatic Crosslinking Services • Photocrosslinking Services • Chemical Crosslinking Services • Direct Chemical Modification • Protein-Fluorophore Bioconjugation • Custom PEGylation Services • PEGylation Products • Target Protein Degradation - Proteolysis Targeted Chimera (PROTAC) • Induced Protein Degradation > Target Protein Degradation - Proteolysis Targeted Chimera (PROTAC) > Hydrophobic Tag Services > Destabilization Domains (DDs) • Hydrophobic Tag Services • Destabilization Domains (DDs) • Drug Development • Protein Analysis > Cell-based Kinase Assays > Protein Aggregation Analysis > Complement Component Assays > Functional Complement Assays • Protein Production > Anaerobic Fermentation > Cell Medium Development and QC Tests • Anaerobic Fermentation > Lactic Acid Bacteria Fermentation • Cell-based Kinase Assays • Isothermal Titration Calorimetry • Lactic Acid Bacteria Fermentation • Protein Aggregation Analysis Nicotiana Tabacum Expression System • Lettuce Transient Expression System • Membrane Protein Binding Screening and Profiling • Baculovirus-Mammalian cell Protein Expression System • Complement Component Assays • Functional Complement Assays • Fusion protein expression • Cell Medium Development and QC Tests

CONTACT US

Tel: 1-631-448-8149
Fax: 1-631-938-8127

Protein–Ligand Docking

The interaction between proteins and their cognate ligands plays an important role in many essential biological processes and metabolic pathways, including signal transduction, transport, cell regulation, gene expression control, and enzyme inhibition. Many experimental techniques are now available for the detection and measurement of these binding interactions, but it remains difficult and expensive to obtain complex structures by experimental methods, such as X-ray crystallography or NMR. Thus, computational docking is considered an important approach for study of protein-ligand interactions and for drug discovery and development.

Profacgen makes use of the most state-of-the-art protein–ligand docking software tools to predict the position and orientation of a ligand when it is bound to a protein receptor by calculating the site, geometry and energy. The process of docking a ligand to a binding site mimics the natural course of interaction of the ligand and its receptor via the lowest energy pathway. Typically our modeling procedures starts with a target of known structure, such as a crystallographic structure of a protein of interest. Docking is then used to predict the bound conformation and binding free energy of small molecules to the target. Every docking protocol can be described as a combination of a search algorithm and a scoring function. The search algorithm generates a large number of poses of a small molecule in the binding site, allowing the degrees of freedom of the protein–ligand system to be sampled sufficiently as to include the true binding modes. The scoring function calculates the score or binding affinity of a particular pose, which represents the thermodynamics of interaction of the protein–ligand system, in order to distinguish the true binding modes from all the others explored, and to rank them accordingly.

Protein-ligand docking process

Protein-ligand docking  process

Profacgen employs docking techniques for a variety of purposes. Single docking experiments are useful for exploring the function of a protein, studying enzyme inhibitors and substrates, elucidating biochemical pathways. Most notably, docking can be applied to the virtual screening of large databases of available chemicals for lead detection and optimization, which offers unparalleled opportunities for structure-based drug design and discovery.

Features

  Parallel computing with efficient search algorithm for fast sampling
  Scoring function including van der Waals, electrostatics, hydrophobic contacts, hydrogen bonds, surface complementarity, solvent effects, etc.
  Induced fit docking with partial flexibility of the receptor
  Multi-ligand docking with cofactor, water, metal ions
  Analysis of binding geometry and prediction of binding affinity
  Application in virtual screening

 

We provide the service in a customizable fashion to suit our customers’ specific research goals. Please do not hesitate to contact us for more details about our protein–ligand docking service.

 

CONTACT US
Email: info@profacgen.com
Tel: 1-631-448-8149
Fax: 1-631-938-8127
Address: 45-1 Ramsey Road, Shirley, NY 11967, USA